

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code :ENGINEERING PHYSICS(16HS603) Course & Branch: B.Tech -

ECE&CSEYear &Sem: I-B.Tech& II-SemRegulation: R16

<u>UNIT –I</u>

PHYSICAL OPTICS, LASERS AND FIBRE OPTICS

1	a) Describe the formation of Newton's ring with necessary theory.	(7M)
	b) Explain how the wavelength of light sources is determined by forming Newton's ring.	(3M)
2	a) Discuss Fraunhofer single slit diffraction.	(7M)
	b) Draw intensity distribution curves and give condition for bright and dark fringes in sin	gle slit
	diffraction pattern.	(3M)
3	a)Describe the important characteristic of laser beam? (6M)	
	b)Explain the difference between spontaneous and stimulated emission of radiation?	(4M)
4	a) Derive the relation between the various Einstein's coefficients of absorption and emiss	ion of
	radiation.	(6M)
	b) Explain population inversion?	(4M)
5	a) Explain the construction and working principle of He-Ne laser with suitable energy level	vel
	diagram.	(8M)
	b) Write few advantages of He-Ne laser.	(2M)
6	a)Explain the construction and working of Nd:YAGlaser with suitable energy level	
	diagram.	(8M)
	b)What are the advantages of Nd:YAG laser?	(2M)
7	a) Explain the different pumping mechanisms in laser.	(5M)
	b)Explain the construction and working principle of laser diode.	(5M)
8	a) What is the acceptance angle of an optical fibre and derive an expression for it. (8M)	
	b) An optical fibre has a core refractive index of 1.44 and cladding refractive index of 1.4	40.
	Find its acceptance angle, θ_a .	(2M)
9	a) What is the numerical aperture of an optical fibre and derive an expression for it.	(7M)
	b) An optical fibre has a numerical aperture of 0.20 and cladding refractive index of 1.59	•
	Determine the refractive index of core and the acceptance angle for the fibre in water has	a
	refractive index of 1.33.	(3M)
10	a) Differentiate step index and graded index fibers.	(5M)
	b) Write brief note on attenuation in optical fibers.	(5M)

<u>UNIT –II</u>

CRYSTALLOGRAPHY, ACOUSTICS AND ULTROSONICS

1.	a) What is (i) Unit cell (ii) Basis (iii) Bravais Lattice.	(3M)
	b) Explain the various types of crystal systems with a neat sketch and examples.	(7M)
2.	a) Derive the packing factor of SC.	(5M)
	b) Derive the packing factor of BCC.	(5M)
3.	a) Define coordination number and atomic packing factor.	(2M)
	b)Show that FCC is mostly closed packed structure than BCC and SC.	(8M)
4.	a) What are Miller indices? Mention the procedure to find Miller indices	(7M)
	b) Write the important features of Miller indices.	(3M)
5.	a) Deduce the expression for the interplanar distances in terms of miller indices for a cul	oic
	system	(7M)
	b) Draw miller indices of planes (1 0 0), (1 0 1) and (0 1 1)	(3M)
6.	a) State and explain Bragg's law of X-ray diffraction.	(7M)
	b) Find the ratiod ₁₀₀ : d_{110} : d_{111} for a simple cubic structure.	(3M)
7.	a) Describe the production of ultrasonic by piezoelectric method.	(7M)
	b) X-ray of wave length $1.5418A^0$ are diffracted by (111) planes in a crystal at an angle	e 30 ⁰ in
	the first order. Calculate inter atomic spacing.	(3M)
8.	a) Write the properties of Ultrasonic waves.	(5M)
	b) Explain the detection methods of Ultrasonic waves.	(5M)
9.	a) Explain Piezoelectric effect.	(4M)
	b) Describe the application of Ultrasonic in non destructive testing(NDT) of material.	(6M)
10	a) Define Reverberation and Reverberation time?	(4M)
	b) What are the basic requirement of acoustically good hall?	(6M)

UNIT-III

QUANTUM MECHANICS AND FREE ELECTRON THEORY

1	a) What is de Broglie Hypothesis? Derive the expression for de Broglie wavelength f	or an
	electron?.	(6M)
	b) Explain the properties of matter waves.	(4M)
2	a) Explain Heisenberg uncertainty principle.	(5M)
	b) What are it's applications.	(3M)
	c) The position of electron in an atom is located within a distance of 0.1A ⁰ using a mid	croscope.
	What is the uncertainty in the momentum of the electron located in this way?	(2M)
3	a) Derive Schrödinger's time independent wave equation.	(8M)
	b) An electron is moving under a potential field of 15kv. Calculate the wavelength of	electron
	wave. (21	M)

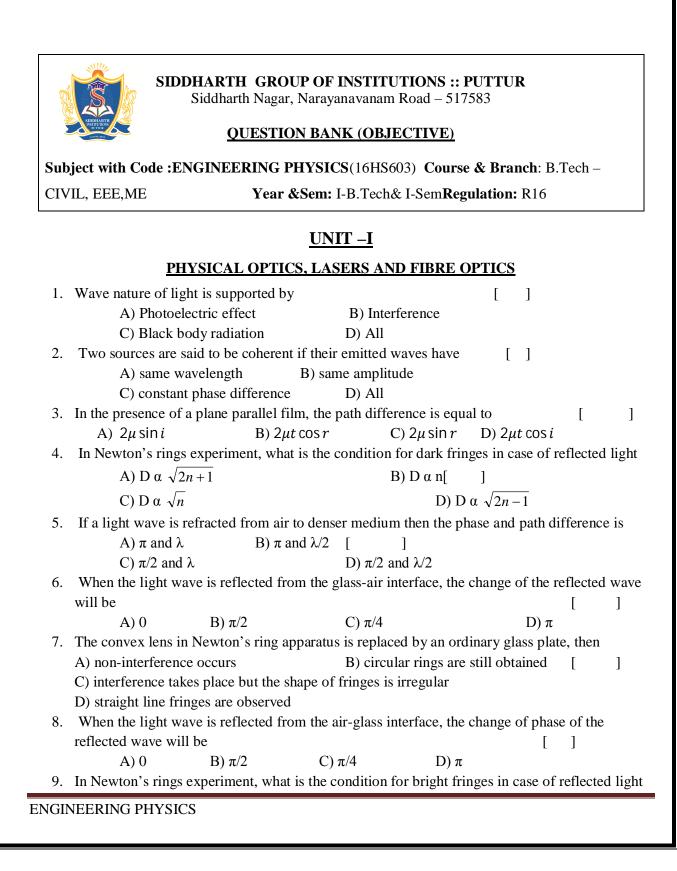
	QUESTION BANK	2016
4	a) Derive Schrödinger's time dependent wave equation.	(6M)
·	b) Explain the physical significance of wave function.	(4M)
5	a) Describe the behavior of particle in a one dimensional infinite potential box or well	· · · ·
C	of Eigen values and function.	(7M)
	b) Draw normalized wave functions for ground and first excited states.	(3M)

6	a) What are the salient features of classical free electron theory? Derive an expression	for
	electrical conductivity in a metal	(7M)
	b) Mention its drawbacks	(3M)
7	a) Derive an expression for electrical conductivity in a metal using Quantum Free Ele	ctronic
	theory	(7M)
	b) Write its advantages over classical free electron theory.	(3M)
8	a) Using classical free electron model derive an expression for electrical conductivity	in metal.
	(7N	(N
	b) Find relaxation time of conduction electron in metal if its resistivity is $1.54 \times 10^{-8} \Omega r$	n and it
	has 5.8×10^{28} conduction electron/m ³ . Given m= 9.1 x 10^{-31} kg, e= 1.6 x 10^{-19} C.	(3M)
9	Classify the solids into conductor, semiconductor and insulators based on band theory	y. (10M)
10	a) Explain the origin of energy bands in solids. (6M)	
	b) For the matal having 6.5 x 10^{28} conduction electron/m ³ . Find the relaxation time of conduction electrons if the metal has resistivity 1.43 x $10^{-8}\Omega$ m. Given m= 9.1 x 10^{-31}	kg,
	$e = 1.6 \text{ x} 10^{-19} \text{ C}.$	(4M)

UNIT-IV

SEMICONDUCTORS AND MAGNETIC MATERIALS

1.	a) What are intrinsic and extrinsic semiconductors?	(4M)
	b) Derive the expression for intrinsic carrier concentraton.	
	(6M)	
2.	a) Explain N-type semiconductor.	(4M)
	b) Explain Drift processes in semiconductors.	(6M)
3.	a) What is Fermi level? Show that Fermi level $E_F = \frac{E_C + E_V}{2}$. (5M)	
	b) Derive Einstein's relation in semiconductors?	(5M)
4.	a) Explain P-type semiconductor.	(4M)
	b) Explain Diffusion processes in semiconductors.	(6M)
5.	a) Describe the Hall effect in a semiconductor.	(7M)
	b) Write the applications of Hall effect.	(3M)
6.	a) Distinguish between direct and indirect band gap semiconductors.	(6M)
	b) The R_H of a specimen is 3.66 x 10^{-4} m ³ c ⁻¹ . Its resistivity is 8.93x 10^{-3} Ωm. Find mobility	and
	charge carrier concentration.	(4M)
7.	a) Define i) magnetic moment ii) magnetic permeability and iii) magnetic susceptibility.	(3M)
ENGI	NEERING PHYSICS	


QUESTIO	N BANK 2016
b) Explain the origin of magnetic moments.	(7M)
8. a) Define i) magnetization ii) magnetic flux density and iii) relative perme	ability. (3M)
b) Derive relation between μ_r and χ .	(5M)
c) A magnetic material has a magnetization of 3300 A/m and flux density	of 0.0044
Wb/m ² .Calculate the magnetizing force and relative permeability of the m	aterial.
(2M)	
9. a) Describe the classification of magnetic materials based on spin magnetic	c moments. (7M)
b) Discuss the applications of soft magnetic materials.	(3M)
10. a) Explain B-H curve of ferromagnetic material.	(6M)
b) What are soft and hard magnetic materials.	(4M)

UNIT-V

SUPERCONDUCTIVITY AND PHYSICS OF NANOMATERIALS

1.	a) What is superconductivity? Write the properties of super conductors.	(5M)
	b) Explain penetration depth in superconductor.	(5M)
2.	a)What is critical temperature, critical magnetic field and critical current?	(3M)
	b) Prove that super conductor is a very good diamagnetic material.	(7M)
3.	a) Explain the types of superconductors.	(6M)
	b) Write properties of super conductors.	(4M)
4.	a) Explain critical magnetic field?	(3M)
	b) Explain BCS theory of superconductors.	(7M)
5.	a) Explain flux quantization in superconductors.	(7M)
	b) A superconducting material has a critical temperature of 3.7K and a magnetic field of	
	0.0306T at 0K. Find the critical field at 2K.	(3M)
6.	a) What is Meissner effect?	(5M)
	b) Explain Josephson effect in superconductors.	(5M)
7.	a) Explain Type-I and Type-II superconductors.	(6M)
	b) Write the applications of super conductors.	(2M)
	c) Calculate the critical current for a lead wire of 0.5mm radius at 4.2k. Given for lead	$T_c =$
	7.18K, Ho=6.5 x 10^4 A/m.	(2M)
8.	a) What is nanomaterial? Write the classification of nanomaterials	(4M)
	b) Explain the basic principle of nanomaterials.	(6M)
9.	a) What is Quantum Confinement?	(4M)
	b) Write the applications of nanomaterial.	(6M)
10	. a) What are the techniques available for synthesizing nanomaterials?	(3M)
	b) Explain ball milling technique for synthesis of nanomaterial.	(7M)

Prepared by: V.Sreedhar, S.Suresh, Dr.K.Siviah, B.Harikrishna.

B) D α n $\overline{-1}$ incipal maxima is $(+ d) \sin \theta = n\lambda$ $\theta = n\lambda$	[]
incipal maxima is ⊦ d) sin θ = nλ	[
incipal maxima is ⊦ d) sin θ = nλ	[
$+ d$) sin $\theta = n\lambda$	L]
		L
reduced	[]
	me brighter	
D) the colour of the	e fringes cha	nge
are at finite distance []	
B) Fresnel's diffrac	ction	
wton's diffraction		
	[]
	-	ng eleme
• • •	-	_
]
	-	1
]
		· 1
	-	
,	D) nir	
-	D) 10 ⁻¹⁰]
C) 10 sec	D) 10	
B) population inversion	l]
	Γ]
	L	Ţ
-		
-) p 8]]
er C) continuous laser	D) pu	lsed laser
,	1	1
$a = b \cdot a^3$ $a = b \cdot a^3$	L	L
C) $\frac{8\pi h v^2}{c}$ D) $\frac{2\pi h v^2}{c^3}$		
	[]	
mical reaction		
rmal process		
	[]
C) coherent and stimulated	d D) all	
He-Ne laser is []	
.5 nm D) 671	.6 nm	
ission are	[]
•		
e to	[]
	D) the colour of the are at finite distance [B) Fresnel's diffraction grating is B) inversely proportional to and a slit is called	B) Fresnel's diffraction wton's diffraction grating is [B) inversely proportional to gration D) directly proportional to wavelength and a slit is called [ats C) grating element D) none mixture is [C) 1:100 D) 100:1 level system. [C) four D) nint time period of [C) 10 ⁻⁸ sec D) 10 ⁻¹⁰ [B) population inversion D) oscillation of laser aser is [B) electric discharge D) passing forward bias [cr C) continuous laser D) pu [C) $\frac{8\pi h \vartheta^3}{c}$ D) $\frac{2\pi h \vartheta^3}{c^3}$ [mical reaction mal process [C) coherent and stimulated D) all le-Ne laser is [S nm D) 671.6 nm ission are [lrogen D) chlorine

		2016
A) diffraction B) interference		
C) total internal reflection D) refraction		
27. In case of an optical fibre the acceptance angle is equal to	[]
A) $\sin^{-1}\sqrt{n_1^2 - n_2^2}$ B) $\sin^{-1}(n_1^2)$	-	J
	-	
C) $\sin^{-1}(n_1 - n_2)$ D) $\sin^{-1}\sqrt{n_1}$		
28. The refractive index of core and cladding are 1.563 and 1.4	- ·	NA is
A) 0.346 B) 0.246 C) 0.192	D) 0.446 []
29. Attenuation in optical fibres is mainly due to	[]
A) scattering losses B) absorption losses		
C) bending losses D) All the above		
30. In fiber optical fibre communication systems, electric signates	als are converted into opt	ical signals
by	[]
A) photo detectors B) LED C) solar cells	s D) All the abov	ve
31. Numerical aperture depends on	[]
A) Acceptance angle B) critical angle		
C) refractive angle D) refraction angle		
32. The refractive index of core and cladding are 1.50 and 1.44	4 respectively, and then Δ	is
A) 0.4 B) 0.004 C) 0.04	D) 4 []
33. In step index fibers, the signal travel in a	[]
A) linear manner B) random manner		
C) zigzag manner D) skew manner		
34. In fiber optical fiber communication systems, optical signa	als are converted into elec	ctrical
signals by		
A) photo detectors B) LED C) solar cells E	D) All the above []	
35. The refractive index of core and cladding are 1.50 and 1.44	4 respectively and then ac	cceptance
angle is	[]
A) 24°50′ B) 26° C) 2	23° D) 23°C	65'
36. In graded index fibers, the refractive index of the core varie	ies []
A) linearly B) exponentially C	C) parabolically D) none	
37. Losses in fiber are expressed in	[]
A) dB/km B) constant C) w/m	D) none	
38. Relative refractive index change $\Delta =$	[]
A) $\frac{n_1 + n_2}{n_1}$ B) $\frac{n_1 - n_2}{n_1}$ C) $\frac{n_1}{n_1}$	$\frac{1-n_2}{n_2}$ D) $\frac{n_1+n_2}{n_2}$	
1 1		
39. The refractive index of core and cladding are 1.50 and 1.44 A) 0.42 B) 0.042 C) 4.2 D) 0.0042		NA 18
	[] r	1
40. In graded index fibre, signals travels in a	$D) 1!_{m}$]
A) random manner B) skew manner C) zigza	tag manner D) lin	ear manner

<u>UNIT –II</u>

CRYSTALLOGRAPHY, ACOUSTICS AND ULTROSONICS

QUESTION BANK 2016

	The relation between atomic radius r and lattice constant a for the case of simple cubic structu is []
	A) $a = 2r$ B) $a = r/2$ C) $\frac{4}{\sqrt{3}}r$ D) $2\sqrt{2}r$
2.	Atomic packing factor of simple cubic crystal system in A) 0.68[]D) 0.52
3.	The crystal system of primitives $a=b\neq c$ and interfacial angles $\propto = \beta = 90^{\circ}, \gamma = 120^{\circ}isknow$ as []
4.	A) cubicB) tetragonalC) monoclinicD) hexagonalBragg's reflection can occur only for wavelengths[]A) $\lambda \leq 2d$ B) $\lambda \leq d$ C) $\lambda \leq 2a$ D) for all wavelengths
5.	If miller indices are (101) then it represents [] A) Plane parallel to X-axis B) Plane parallel to Y-axis C) Plane parallel to Z-axis D) Plane parallel to X-axis and Z-axis
6.	Triclinic system possesses lattice parameters is A) $a \neq b \neq c$; $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$ B) $a \neq b \neq c$; $\alpha = \beta = \gamma \neq 90^{\circ}$ B) $a \neq b \neq c$; $\alpha = \beta = \gamma \neq 90^{\circ}$
7	C) $a = b = c$; $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$ D) $a = b \neq c$; $\alpha = \beta = \gamma = 90^{\circ}$ Optimum reverberation time for music is
7.	Optimum reverberation time for music is[A) 0.5 to 1 secB) 0 to 1 secC) 1 to 2 secD) above 5 sec
8	Which radiation produces diffraction as they pass through the crystals? []
0.	A) X-rays B) IR-rays C) γ -rays D) UV-rays
9	Which one of the following has maximum absorption coefficient []
).	A) marble B) carpet C) human body D) glass
10	To have good sound effect inside a hall []
10.	A) The reverberation time has to be as large as possible
	B) The reverberation time has to be zero
	C) The hall should not have any sound absorbing material
	D) The reverberation time has to be optimum.
11	
11.	A smallest block whose repetition in space indefinitely generates a crystal is called[A) Primitive cellB) Space latticeC) Unit cellD) None
12	The number of atoms present in a unit cell of simple cubic structure []
12.	A) 8 B) 1 C) 4 D) 6
13	The relation between atomic radius r and lattice constant a for the case of BCC system is
15.	A) $a=2r$ B) $\frac{4}{\sqrt{3}}r$ C) $a=2\sqrt{2}r$ D) $a=\sqrt{3}/4r$ []
	v o
14.	The miller indices of the plane parallel to z-axis are []
	A) (0 0 1) B) (1 0 1) C) (11 0) D) (100)
15.	The crystal system of primitives $a=b\neq c$ and interfacial angles $\propto = \beta = 90^{\circ}, \gamma = 120^{\circ}isknow$
	as []
cubi	
16.	Sabine's formula is
	A) $T = \frac{0.651V}{\sum aS}$ B) $T = \frac{0.165V}{\sum aS}$ C) $T = \frac{\sum aS}{0.651V}$ D) $T = \frac{\sum aS}{0.165V}$

QUESTION BAN	К 20)16
17. Lattice + Basis =	[]
A) Unit cell B) Crystal C) Amorphous solid D) None of this	L	1
18. If Miller indices are (101) then it represents	[1
A) plane parallel to x -axis B) plane parallel to y -axis	L	1
C) plane parallel to z-axis D) plane parallel to x-axis and z-a	xis	
19. Interplanar distance for (111) plane is	[]
A) $a\sqrt{3}$ B) $a/\sqrt{3}$ C) $3aD) a/3$	L	L
$\gamma \gamma $		
20. The number of crystal system is	[]
A) 4 B) 5 C) 6 D) 7	_	_
21. The number of atoms per unit cell in a BCC lattice is	[]
A) 1 B) 2 C) 4 D) 8		
22. Atomic packing factor of BCC crystal system is []		
A) 0.68 B) 0.74 C) 1.00 D) 0.52		
23. The relation between atomic radius r and lattice constant a in the case of FCC cry	stal sy	stem is
A) $a = 2r$ B) $a = \frac{4}{\sqrt{3}}r$ C) $a = 2\sqrt{2}r$ D) $a = \frac{r}{2\sqrt{2}}$ []		
24. The materials having different properties along different directions are called	[]
A) anisotropic B) isotropic C) amorphous D)None of the above	-	-
25. The planes (112) and (224) are	ſ]
A) perpendicular to each other B) intersecting at angle other than 90	0	L
C) parallel to each other D) None of the above.		
26. The Miller indices of the plane parallel to the x-axis and y-axis are	Γ]
A) (1 1 0) B) (0 1 1) C) (1 0 0) D) (0 0 1)	L	1
27. The Miller indices (hkl) represents	[]
A) the direction B) a plane C) system of planes D) a set of parallel plane	-	
28. The velocity of ultrasonic waves in air is	[]
A) 120 m/s B) 420m/s C)330 m/s D) 480 m/s	L	1
29. There are distinguishable ways of arranging points in three dimensional spac	es calle	ed
Bravaislattice	[1
A) 7 B) 14 C) 8 D) 5	L	1
30. The number of atoms per unit cell in an FCC lattice is	[1
A) 1 B) 2 C) 4 D) 8	L	1
31. Atomic packing factor of FCC crystal system is []	
A) 0.68 B) 0.74 C) 0.52 D) 1.00		
32. Which one of the following has minimum absorption coefficient	[1
A) glass B)felt C)open window D) wooden floor	L	L
33. The walls of a halls built for music concerns should]	1
A) amplify sound B) reflect sound C) transmit sound D) absorb sound	L	1
34. The speed of propagation of ultrasonic waves with the increase of freque	encv []
A) Increases B) Decreases	j L	1
C) Exponentially increases D) Exponentially decreases		
35. The principle used for the production of Ultrasonic wave is	[1
A) Hall Effect B) Compton Effect	L	L
C) Piezoelectric Effect D) Photoelectric Effect		

QUESTION BANK 2016 36. What is the range of infrasonic waves [] A) 1 Hz – 20 Hz B) 20 Hz – 20 kHz C) 20 Hz – 20MHz D) All 37. Which of the following frequencies lies in the range of Ultrasonic waves] ſ A) 10 KHz B) 8 KHz C) 6 KHz D) 1MHz 38. Ultrasonic waves can be detected by] ſ A) Kundt's tube method B) Sensitive flame method C) Thermal detector method D) All of these 39. A quartz crystal of thickness t with young's modulus Y and density ρ then the fundamental frequency of vibration given by [1

A)
$$f = \frac{1}{2t} \sqrt{\frac{Y}{\rho}}$$
 B) $f = 2t \sqrt{\frac{Y}{\rho}}$ C) $f = \frac{1}{2t} \sqrt{\frac{\rho}{Y}}$ D) $f = \frac{1}{t} \sqrt{\frac{Y}{\rho}}$

40. A quartz crystal of thickness t with young's modulus Y and density ρ then the second overtone is given by []

A)
$$f = \frac{3}{2t} \sqrt{\frac{Y}{\rho}}$$
 B) $f = 2t \sqrt{\frac{Y}{\rho}}$ C) $f = \frac{3}{2t} \sqrt{\frac{\rho}{Y}}$ D) $f = \frac{3}{t} \sqrt{\frac{Y}{\rho}}$

UNIT-III

QUANTUM MECHANICS AND FREE ELECTRON THEORY

	given by	- 26.12	~ 12	.26 - 12.26 .0	[]
	A) $\frac{12.26}{\sqrt{V}} nm$	B) $\frac{26.12}{\sqrt{V}}$	A^0 C) ${\sqrt{2}}$	$\frac{1}{\sqrt{V}}$ μm D) $\frac{1}{\sqrt{V}} A^0$		
2.	An electron, neutror	and proton have the	same wavelength.	Which particle has	greater	
	velocity?				[]
-	A) Neutron	B) Prote	on	C) Electron	D) All	_
3.	Probability density of				[]
	A) Ψ	B) $ \Psi ^2$	С) ΨΨ [*] Ψ	D) none		
4.	When an electron is	accelerated through	a potential field of	100 V then it is ass	ociated v	vith a
	wave of wavelength	equal to		[]	
	A) 0.1226 m	m B) 1.226	nm C) 12.2	6 nm D) 122.6 nr	n	
5.	The wavelength of c	le Broglie wave asso	ciated with a movin	g particle is indepe	endent of	it's
	A) Mass	B) Charge	C) Velocity	D) Momentum	[]
6.	If E is the kinetic en	ergy of the material	particle of mass m t	hen the de Broglie	waveleng	gth is
		B) $\frac{\sqrt{2mE}}{h}$	C) $h\sqrt{2mE}$	-	1	-
	A) $\frac{h}{\sqrt{2mE}}$	$\frac{b}{h}$	C) IN ZINE	$D = \frac{D}{2mE}$]	
7.	The characteristic of	f particles are			[]
	A) Wavelength	B) Frequency	C) Amplitud	de D) Mome	ntum	
8.	Velocity of matter w	vaveis always	of velocity	of light.	[]
	A) Less than	B) equal	C)greater than	D) none of these		
9.	The dual nature is ex	khibited by		[]		
	A) Particle only	•	C) Photon only	D) By both	A and B	
	,	,	-,,	, , ,		

QUESTION BANK 2016
 10. The wave function Ψ associated with a moving particle [] A) Is not an observable quantity B) does not have direct physical meaning C) is a complex quantity D) all of the above
11. The most probable position of a particle in a one dimensional potential well of width a in the first quantum state is [1]
A) a/4 B) a/3 C) a/2 D) 2a/3
12. Einstein mass – energy relation is []
A) $v = \frac{mc^2}{h}$ B) $v = \frac{mc}{h}$ C) $v = \frac{hc}{\lambda}$ D) $\lambda = \frac{mc}{h}$
13. The uncertainty principle is applicable to []
A) Only small particlesB) Microscopic particlesC) All material particlesD) Only tiny particles
14. The wavelength of electron moving with a velocity of 500 m/s is []
A) 1.45 nm B) 0.50 nm C) 2.90 nm D) 3.00 nm
15. Dual nature of matter wave proposed by []]
A) de BroglieB) PlanckC) EinsteinD) Newton
16. Which of the following equation is the normalized wave equation [] A) $\iiint \Psi ^2 dx dy dz = 0$ B) $\iint \Psi ^2 dx dy dz = 1$
C) $\iiint \Psi dx dy dz = 0$ D) $\iint \Psi dx dy dz = 1$
17. In a one dimensional potential box, particle energy [] A) $\frac{n^2 \pi^2 \hbar^2}{2ma^2}$ B) $\frac{n^2 \pi^2 h^2}{2ma^2}$ C) $\frac{n^2 h^2}{2ma^2}$ D) $\frac{n^2 \pi^2 \hbar^2}{8ma^2}$
A) $\frac{n^2 \pi^2 \hbar^2}{2ma^2}$ B) $\frac{n^2 \pi^2 \hbar^2}{2ma^2}$ C) $\frac{n^2 \hbar^2}{2ma^2}$ D) $\frac{n^2 \pi^2 \hbar^2}{8ma^2}$
18. The characteristic of particles are[]
A) Mass B) Velocity C) Energy D) All the above
19. Probability density of a wave function ψ is []
A) ψ B) $ \psi^2 $ c) $\int \psi \psi^* dt d\psi$ D) none
20. The wavelength of de Broglie wave associated with a moving particle is independent of it's
A) MassB) ChargeC) Velocity D) Momentum []
21. If an electron is moving under a potential field of 15 kV. Calculate the wavelength of electron
waves
A) 1 Å B) 0.1 Å C) 10 Å D) 0.01 Å 22 According to the de Broglie, electron exhibits which nature?
22. According to the de Broglie, electron exhibits which nature?[A) WaveB) ParticleC) Wave and ParticleD) Energy
23. The equation $\iiint \Psi ^2 dx dy dz = 1$ represents []
A) Orthogonal wave function B) Normalized wave function C)
Orthogonal and Normalized wave function D) none
24. The uncertainty principle is applicable to []
A) Only small particles B) Microscopic particles
C) All material particles D) Only tiny particles
25. According to the de Broglie, electron exhibits which nature? []
A) Wave B) Particle C) Wave and Particle D) Energy
26. Einstein mass energy relation is []
A) $E = mc^2$ B) $\frac{h}{\lambda} = mc$ C) $\vartheta = \frac{mc^2}{h}$ D) All
ENGINEERING PHYSICS

QUESTION BANK 2016

27. The characteristics of waves are	[]
A) Energy B) Phase C) Mass D) Velo	ocity
28. The energy band gap between valence band and conduction band in an insulator is	
A) Zero B) small C) large D) none []	
29. The energy band gap between valence band and conduction band in a conductor is	[]
	none
30. The energy band gap between valence band and conduction band in a semiconduct	
	[]
31. The classical free electron theory is based on the principle of []
• • •]
A) classical mechanics B) statistical mechanics C) quantum mechanics D) none	
32. The quantum free electron theory is based on the principle of []	
A) classical mechanics B) statistical mechanics C) quantum mechanics D) none	
	[]
A)any were in the metal B) outside the metal	
C) not moving D) none	
34. In quantum free electron theory, electrons are moving in []
A)a stationary orbital B) a non-stationary orbital C) not moving D) none	
35. In Band theory of solids, electrons are moving in	[]
A) a non-periodic potential B) periodic potentialC) not moving D) none	
36. The uncertainty principle is applicable to	
A) only small particles B) microscopic particles	
C) all material particles D) only tiny particles	[]
37. Lattice vibration is also known as	[]
A) phonon scattering B) by impurities C) by defects D) all	
38. Classical free electron theory was developed by []	
A) Sommerfeld B) Drude and Lorentz C) Bloch D) Eins	tein
39. Quantum free electron theory was developed by [1
A) Sommerfeld B) Drude and Lorentz C) Bloch D) Finstein
) Einstein
40. According to quantum free electron theory the expression for electrical conductivity is) Einstein
40. According to quantum free electron theory the expression for electrical conductivity is A) $\frac{ne^2\tau}{F}$ B) $\frac{ne^2\tau_F}{F}$ C) $\frac{ne^2\tau_F}{F}$ D) $\frac{e^2\tau_F}{F}$) Einstein
40. According to quantum free electron theory the expression for electrical conductivity is	
40. According to quantum free electron theory the expression for electrical conductivity is A) $\frac{ne^2\tau}{E}$ B) $\frac{ne^2\tau_F}{E}$ C) $\frac{ne^2\tau_F}{E}$ D) $\frac{e^2\tau_F}{E}$	
40. According to quantum free electron theory the expression for electrical conductivity is A) $\frac{ne^2\tau}{m}$ B) $\frac{ne^2\tau_F}{m}$ C) $\frac{ne^2\tau_F}{m^*}$ D) $\frac{e^2\tau_F}{nm}$ UNIT-IV	
40. According to quantum free electron theory the expression for electrical conductivity is A) $\frac{ne^2\tau}{m}$ B) $\frac{ne^2\tau_F}{m}$ C) $\frac{ne^2\tau_F}{m^*}$ D) $\frac{e^2\tau_F}{nm}$	
40. According to quantum free electron theory the expression for electrical conductivity is A) $\frac{ne^2\tau}{m}$ B) $\frac{ne^2\tau_F}{m}$ C) $\frac{ne^2\tau_F}{m^*}$ D) $\frac{e^2\tau_F}{nm}$ UNIT-IV <u>SEMICONDUCTORS AND MAGNETIC MATERIALS</u>	[]
40. According to quantum free electron theory the expression for electrical conductivity is A) $\frac{ne^2\tau}{m}$ B) $\frac{ne^2\tau_F}{m}$ C) $\frac{ne^2\tau_F}{m^*}$ D) $\frac{e^2\tau_F}{nm}$ UNIT-IV <u>SEMICONDUCTORS AND MAGNETIC MATERIALS</u> 1. 1. The number of valence electrons in Si atom is	
40. According to quantum free electron theory the expression for electrical conductivity is A) $\frac{ne^2\tau}{m}$ B) $\frac{ne^2\tau_F}{m}$ C) $\frac{ne^2\tau_F}{m^*}$ D) $\frac{e^2\tau_F}{nm}$ UNIT-IV <u>SEMICONDUCTORS AND MAGNETIC MATERIALS</u> 1. 1. The number of valence electrons in Si atom is A) 1 B) 2 C) 3 D) 4	[]
40. According to quantum free electron theory the expression for electrical conductivity is A) $\frac{ne^2\tau}{m}$ B) $\frac{ne^2\tau_F}{m}$ C) $\frac{ne^2\tau_F}{m^*}$ D) $\frac{e^2\tau_F}{nm}$ UNIT-IV SEMICONDUCTORS AND MAGNETIC MATERIALS 1. 1. The number of valence electrons in Si atom is A) 1 B) 2 C) 3 D) 4 2. Gallium arsenide is a band gap semiconductor.	[]
40. According to quantum free electron theory the expression for electrical conductivity is A) $\frac{ne^2\tau}{m}$ B) $\frac{ne^2\tau_F}{m}$ C) $\frac{ne^2\tau_F}{m^*}$ D) $\frac{e^2\tau_F}{nm}$ UNIT-IV SEMICONDUCTORS AND MAGNETIC MATERIALS 1. 1. The number of valence electrons in Si atom is A) 1 B) 2 C) 3 D) 4 2. Gallium arsenide is a band gap semiconductor. [] A) indirectB) direct C) both A & B D) none	[]
40. According to quantum free electron theory the expression for electrical conductivity is A) $\frac{ne^2\tau}{m}$ B) $\frac{ne^2\tau_F}{m}$ C) $\frac{ne^2\tau_F}{m^*}$ D) $\frac{e^2\tau_F}{nm}$ UNIT-IV SEMICONDUCTORS AND MAGNETIC MATERIALS 1. 1. The number of valence electrons in Si atom is A) 1 B) 2 C) 3 D) 4 C) Gallium arsenide is a band gap semiconductor. A) indirectB) direct C) both A & B D) none 3. Under forward bias, the width of depletion region	[]
40. According to quantum free electron theory the expression for electrical conductivity is A) $\frac{ne^2\tau}{m}$ B) $\frac{ne^2\tau_F}{m}$ C) $\frac{ne^2\tau_F}{m^*}$ D) $\frac{e^2\tau_F}{nm}$ UNIT-IV SEMICONDUCTORS AND MAGNETIC MATERIALS 1. 1. The number of valence electrons in Si atom is A) 1 B) 2 C) 3 D) 4 C (C) 3 D) 4 2. Gallium arsenide is a band gap semiconductor. [] A) indirectB) direct C) both A & B D) none 3. Under forward bias, the width of depletion region A) decreases B) increases C) constant D) All	[]
40. According to quantum free electron theory the expression for electrical conductivity is A) $\frac{ne^2 \tau}{m}$ B) $\frac{ne^2 \tau_F}{m}$ C) $\frac{ne^2 \tau_F}{m^*}$ D) $\frac{e^2 \tau_F}{nm}$ UNIT-IV SEMICONDUCTORS AND MAGNETIC MATERIALS 1. 1. The number of valence electrons in Si atom is A) 1 B) 2 C) 3 D) 4 2. Gallium arsenide is a band gap semiconductor. [] A) indirectB) direct C) both A & B D) none 3. Under forward bias, the width of depletion region A) decreases B) increases C) constant D) All 4. If the charge carriers are electrons, the Hall coefficient is	[]
40. According to quantum free electron theory the expression for electrical conductivity is A) $\frac{ne^2 \tau}{m}$ B) $\frac{ne^2 \tau_F}{m}$ C) $\frac{ne^2 \tau_F}{m^*}$ D) $\frac{e^2 \tau_F}{nm}$ UNIT-IV SEMICONDUCTORS AND MAGNETIC MATERIALS 1. 1. The number of valence electrons in Si atom is A) 1 B) 2 C) 3 D) 4 2. Gallium arsenide is a band gap semiconductor. A) indirectB) direct C) both A & B D) none 3. Under forward bias, the width of depletion region A) All	[]

QUESTION BANK 2016 1 5. Phosphorous, arsenic and antimony are ______ elements. ſ A) pentavalent B) trivalent C) monovalent D) divalent Electric conduction in a semiconductor occurs due to the motion of 1 6. ſ A) free electrons only B) holes only C) both free electrons and holes D) neither electrons nor holes 7. Holes are charge carriers in 1 ſ A) intrinsic semiconductors B) ionic solids C) n-type semiconductors D) metals 8. Under reverse bias, the width of the depletion region 1 A) increases B) decreases C) constant D) none 9. Silicon is a _____ band gap semiconductor. 1 ſ A) direct B) indirect C) Both A & B D) none 10. The ratio of diffusion coefficient to mobility of charge carriers is proportional to B) T^2 C) 1/T D) $1/T^2$ A) T 1 11. At 0K, a pure semiconductor is 1 A) a conductorB) a resistor C) a power source D) an insulator 12. The majority charge carriers of a p-type semiconductors are] B) holes D) negative ions A) electron C) positive ions 13. The Fermi level in an n-type semiconductor lies] ſ A) near the valence band B) near the conduction band C) exactly at the middle of the energy gap D) none of these 14. The Hall coefficient, $R_{\rm H} =$ 1 ſ A) 1/ne B) n/e C) e/n D) en 15. If the Hall coefficient is negative then the semiconductor is 1 D) extrinsic A) p-type B) n-type C) intrinsic 16. At 0 K pure silicon is ſ 1 B) holes A) extrinsic semiconductor C) a superconductor D) an intrinsic semiconductor 17. The majority charge carriers of a n - type semiconductors are ſ 1 A) electrons B) holes C) positive ions D) negative ions 18. The Fermi level in an n - type semiconductor lies] Γ A) near the valence band B) near the conduction band C) exactly at the middle of the energy band D) none of these 19. The diffusion current is proportional to ______ of charge carriers.] [A) concentration gradient B) drift velocity C) mobility D) none of these 20. If the Hall coefficient is positive then the semiconductor is ſ 1 A) p – type B) intrinsic C) n - typeD) extrinsic 21. Copper is _____ magnetic material. Γ 1 B) para A) dia C) ferro D) anti-ferro 22. The SI unit of magnetic moment is 1 A) Wb/m^2 C) A/m^2 D) A m^2 B) Wb 23. Relation between B, H and M is 1 ſ A) B = $\mu_0(H+M)$ B) $M = \mu_0(H+B)$ ENGINEERING PHYSICS

QUESTION BANK 2016 C) $H = \mu_0(B+M)$ D) B = μ (H+M) 24. Magnetic susceptibility is] Γ A) torque per unit area B) dipole moment per unit volume C) magnetization per unit magnetic field intensity D) none of these 25. One Bohr magneton μ_B is equal to Γ] A) $\frac{4\pi m}{eh}$ C) $\frac{me}{4\pi h}$ D) $\frac{eh}{4\pi m}$ B) 4π mhe 26. Relative permeability is related to magnetic susceptibility by [D) $\mu_r = 1/\chi$ A) $\mu_r = 1 - \chi_r$ B) $\mu_r = 1 + \chi$ C) $\mu_r = \chi - 1$ 27. A field of strength 100 A/m produces a magnetization 2000 A/m in a ferromagnetic material. The relative permeability of the material is B) 3 C) 21 D) 1.05 A) 19 28. The area enclosed by hysteresis loop is a measure of [1 A) retentivity B) susceptibility C) permeability D) energy loss per cycle 29. Material which lack permanent dipoles are called____] ſ A) diamagnetic B) paramagnetic C) ferromagnetic D) ferrimagnetic 30. The permeability of free space is Γ 1 A) $4\pi \times 10^{-7}$ H/m B) $4\pi \times 10^{-8}$ H/m D) $2\pi \times 10^{-8}$ H/m C) $2\pi \times 10^{-7}$ H/m 31. To obtain p-type semiconductor out of the following impurities to be added ſ 1 A) arsenic B) antimony C) indium D) phosphorus 32. The magnetic dipole moments of neighbouring atoms are antiparallel and unequal for _____ magnetic material C) ferri D) anti-ferro A) dia B) para 33. The hysteresis loss is less for _____ magnetic materials. 1 Γ C) soft A) dia B) para D) hard 34. Diamagnetic susceptibility is 1 D) large, positive A) large, negative B) small, negative C) small, positive 35. One Bohr magneton equal to 1 ſ A) 9.27 x 10^{-16} A m² B) 9.27 x 10^{-19} A m² C) 9.27 x 10^{-28} A m² D) 9.27 x 10⁻²⁴ A m² 36. Magnetic dipole moment per unit volume of material is called ſ 1 A) Permeability B) Polarisation C) Magnetisation D) Magnetic induction 37. The materials don't having permanent magnetic dipoles are ſ] A) diamagnetic B) paramagnetic C) ferromagnetic D) ferrimagnetic 38. The SI unit of magnetic field intensity is [] B) Wb/m^2 A) H/m C) A/m D) no unit 39. One nuclear magneton equals to 1 ſ B) 5.05 x 10^{-29} A m² A) 9.27 x 10^{-24} A m² C) $5.05 \times 10^{29} \text{ A m}^2$ D) $9.27 \times 10^{24} \text{ A m}^2$

			QUESTIO	ON BANK 2016
40. F	Paramagnetic susceptibility var	ries as		[]
	A) T^2 B) $1/T$ C) $1/T^2$	
	<i>, ,</i>	,	,	
		UNIT	'-V	
	SUPERCONDUCTI	<u>VITY AND PH</u>	IYSICS OF NANOMATE	RIALS
1. 1	1. The conductivity of supercor			[]
	A) zero	B) finite	C) infinite	D) none
2. Т	Type – I superconductors are			[]
	, , , , ,	rdC) ductile	D) flexible	-
	A lead superconductor with T_C			x 10^3 A/m at absol ⁴
Z	zero. What could be the value of			[]
	A) 3.365 A/m		m C) 336.5 A/m D) 336	65 A/m
4. T	The critical temperature is			[]
-	A) same		C) Both A and B	D) none
5. 1	Theory which explains superco	-		[]
	A) Lattice theory		entz theory C) BCS th	-
6. 7	Type – II superconductors are			[]
	A) soft B) hard		C) ductile D) flex	
7. S	Superconductors exhibiting con]
- F	A) soft B) hard	· · · · · · · · · · · · · · · · · · ·	b) ductile D) flex	
8. 1	The following element will not	-	•	[]
r	A) Copper	B) Gold	C) Silver	D) All
9. 1	The maximum current that can	-		
. (A) super current	B) critical cur	rrent C) optimum curr	rent D) none
10. S	Superconductivity mainly occur		- · ·	l
	A) electron – electron in		B) electron $-$ pro-	oton interaction
11 T	C) proton – proton inter		D) none	Г
l1. г	Hysteresis means of an ef			L
10 5	A) laggingB) advancing	· ·	,	е
12. 1	The superconducting transition $A > A > C$	—	-	
12 (A) 4.2 °C	B) 4.2 K	C) 4.2 °F	D) none
13. c	Cooper pairs are broken at	temperau		[
	A) critical temperature		B) below critical temperate $D \cap K$	ure
14 F	C) above critical temper		D) 0 K	r j
14. 1	The magnetizations of a superce			
	A) 0	B) H	C) 1	D) -H
15. <i>P</i>	At low temperature, the normal			
• ~	A) semiconductor	B) insulator	C) superconductor	D) none
16 F	Above Curie temperature, a fer	romagnetic subs	stance becomes	l J

QUESTION BANK 2016 A) Paramagnetic B) diamagnetic C) antiferromagnetic D) strongly ferromagnetic 17. The critical magnetic field at temperature T K is ſ 1 A) $H_0 \left[1 - \left(\frac{T}{T_c} \right)^2 \right]$ B) $H_C \left[1 - \left(\frac{T}{T_c} \right)^2 \right]$ C) $H_0 \left[1 + \left(\frac{T}{T_c} \right)^2 \right]$ D) $H_C \left[1 + \left(\frac{T}{T_c} \right)^2 \right]$ 18. A superconductor is a perfect _____ material. 1 A) diamagnetic B) dielectric C) insulator D) semiconductor 19. In a superconductor 1 Γ A) $\chi = -1$ D) All B) B = 0 C) H = -M20. A superconductor exhibits _____ resistance. 1 B) large D) infinite A) small C) zero 21. By reducing the size of a nanomaterial, the change in the interatomic spacing is ſ 1 A) increased B) decreased C) first increased and then decreased D) kept constant 22. 1 nm = $[D] 10^{-9} m^2$ A) 10⁻⁹ mm B) 10^{-9} cm C) 10⁻⁹ m 23. The relation between critical current and critical magnetic field is A) $H_c = \frac{I_c}{2\pi r}$ B) $H_{c} = \frac{I_{c}}{\pi r^{2}}$ D) $I_c = \frac{H_c}{2\pi r}$ C) $I_C = \frac{H_C}{\pi r^2}$ 24. Nanomaterials are catalysts because of their enhanced ſ 1 A) Chemical activity B) thermal activity C) Mechanical activity D) optical activity 25. In quantum confinement effect, the energy levels of ------ changes. 1 D) nanoparticles A) electrons B) atoms C) molecules 26. Who first visualised the concept of nanotechnology? 1 ſ A) Eric Drexler B) Richard Feynman C) Norio Taniguchi D) Newton 27. Quantum dot is an example of ſ 1 A) 1D nanomaterial B) 2D nanomaterial C) 3D nanomaterial D) all 28. For a cubic nanoparticle of side 'a' surface area to volum ratio is given by A) 3/a B) 4/a C) 5/a D) 6/a 1 29. When the dimension of the nanoparticles is of the order of de Broglie wavelength, or mean free path of electrons, energy levels of electrons change. This effect is called _ 1 A) surface area to volume ratio B) quantum confinement C) CNT D) none 30. For nanomaterials, the surface area to volume ratio is] ſ A) largeB) very large C) small D) very small 31. The size range of nanomaterials is 1 A) 1 to 100 cm B) 1 to 100 nm C) 1 to 100 mm D) 1 to 100 µm 32. Cloths made up of nanofibres are 1

QUESTION BANK 2016 A) water repellent B) wrinkle free C) stress resistant D) all of these 33. In the fabrication of nanoparticles, bulk material is crushed into nanoparticles on method. [] A) CVD B) Ball milling C) Plasma arching D) Sol-gel method 34. For a sphere of nanoparticles of radius r, surface area to volume ratio is given by [1 A) 2/r B) 3/r C) 4/r D) 5/r 35. The technique used for the fabrication of nanomaterials 1 B) Sol-gel A) Ball milling C) CVD D) All of these 36. Gold nanospheres of 100 nm appear 1 Γ A) blue in color B) red in color C) violet in color D) orange in color 37. The superconducting transition temperature of Lead is] ſ A) 7.2 K B) 4.2 K C) 4.12 K D) none 38. Soft superconductors are 1 ſ D) flexible A) Type – I B) Type – II C) ductile 39. Hard superconductors are 1 ſ D) flexible A) Type – I B) Type – II C) ductile 40. Super conductors are good conductors at ______ temperature. B) above 27°C A) Below 27°C C) 27°C D) 27°K

Prepared by: V.Sreedhar, S.Suresh, Dr.K.Siviah, B.Harikrishna.